Lesson 27a. Triple Integrals

1 In this lesson...

- How do we integrate 3 -variable functions over 3D regions of integration?

2 Triple integrals over rectangular boxes

- Fubini's theorem for triple integrals. Let $B=\{(x, y, z) \mid a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\}$. Then
- $(f$ continuous on $B)$
- Integrate from the inside out
- When all limits of integration are constant, we can integrate in any order

Example 1. Evaluate the triple integral $\iiint_{B} x d V$, where B is the rectangular box given by $B=\{(x, y, z) \mid 0 \leq x \leq$ $1,-1 \leq y \leq 2,0 \leq z \leq 3\}$.

3 Triple integrals over general bounded 3D regions

- Type A 3D region: between two continuous functions of x and y

- E is the 3 D region
- D is the projection (shadow) of E onto the $x y$-plane
- If E is a type A region, then
- (f, u_{1}, u_{2} continuous)
- Integration from the inside out
- Double integral over D can be done using previous techniques (e.g. Type I or II region)

Example 2. Express $\iiint_{E} x d V$ as an iterated integral, where E lies below the plane $z=1+x+y$ and above the region in the $x y$-plane bounded by the curves $y=x^{2}$ and $y=x$.

